Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
IntroductionEEG-based emotion recognition has gradually become a new research direction, known as affective Brain-Computer Interface (aBCI), which has huge application potential in human-computer interaction and neuroscience. However, how to extract spatio-temporal fusion features from complex EEG signals and build learning method with high recognition accuracy and strong interpretability is still challenging.MethodsIn this paper, we propose a hybrid attention spatio-temporal feature fusion network for EEG-based emotion recognition. First, we designed a spatial attention feature extractor capable of merging shallow and deep features to extract spatial information and adaptively select crucial features under different emotional states. Then, the temporal feature extractor based on the multi-head attention mechanism is integrated to perform spatio-temporal feature fusion to achieve emotion recognition. Finally, we visualize the extracted spatial attention features using feature maps, further analyzing key channels corresponding to different emotions and subjects.ResultsOur method outperforms the current state-of-the-art methods on two public datasets, SEED and DEAP. The recognition accuracy are 99.12% ± 1.25% (SEED), 98.93% ± 1.45% (DEAP-arousal), and 98.57% ± 2.60% (DEAP-valence). We also conduct ablation experiments, using statistical methods to analyze the impact of each module on the final result. The spatial attention features reveal that emotion-related neural patterns indeed exist, which is consistent with conclusions in the field of neurology.DiscussionThe experimental results show that our method can effectively extract and fuse spatial and temporal information. It has excellent recognition performance, and also possesses strong robustness, performing stably across different datasets and experimental environments for emotion recognition.
IntroductionEEG-based emotion recognition has gradually become a new research direction, known as affective Brain-Computer Interface (aBCI), which has huge application potential in human-computer interaction and neuroscience. However, how to extract spatio-temporal fusion features from complex EEG signals and build learning method with high recognition accuracy and strong interpretability is still challenging.MethodsIn this paper, we propose a hybrid attention spatio-temporal feature fusion network for EEG-based emotion recognition. First, we designed a spatial attention feature extractor capable of merging shallow and deep features to extract spatial information and adaptively select crucial features under different emotional states. Then, the temporal feature extractor based on the multi-head attention mechanism is integrated to perform spatio-temporal feature fusion to achieve emotion recognition. Finally, we visualize the extracted spatial attention features using feature maps, further analyzing key channels corresponding to different emotions and subjects.ResultsOur method outperforms the current state-of-the-art methods on two public datasets, SEED and DEAP. The recognition accuracy are 99.12% ± 1.25% (SEED), 98.93% ± 1.45% (DEAP-arousal), and 98.57% ± 2.60% (DEAP-valence). We also conduct ablation experiments, using statistical methods to analyze the impact of each module on the final result. The spatial attention features reveal that emotion-related neural patterns indeed exist, which is consistent with conclusions in the field of neurology.DiscussionThe experimental results show that our method can effectively extract and fuse spatial and temporal information. It has excellent recognition performance, and also possesses strong robustness, performing stably across different datasets and experimental environments for emotion recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.