This study investigates the potential effects of periodic defocus oscillations on contrast sensitivity. Sinusoidal fluctuations at 5, 15, and 25 Hz, with defocus peak-to-valley values ranging from 0.15 to 3 D, were induced by means of a focus-tunable lens after calibrating its dynamic behavior. Monocular contrast sensitivity was measured on five young emmetropic subjects. The experimental data shows that contrast sensitivity loss due to defocus fluctuations is low for a wide range of frequencies and amplitudes. Only for the more severe case studied (25 Hz, ± 1.5 D) contrast threshold showed a clear increase in most subjects. Qualitative comparison of the empirical data with a simulation of modulation loss due to time integration of defocused retinal point spread functions, suggests a short integration time by the eye for defocus blur, around or even below a hundredth of a second.