The regulation of transcription requires the coordination of numerous activities on DNA, yet it remains poorly understood how transcription factors facilitate these multiple functions. Here we use lattice lightsheet microscopy to integrate singlemolecule and highspeed 4D imaging in developing Drosophila embryos to study the nuclear organization and interactions of the key patterning factors Zelda and Bicoid. In contrast to previous studies suggesting stable, cooperative binding, we show that both factors interact with DNA with surprisingly high offrates. We find that both factors form dynamic subnuclear hubs, and that Bicoid binding is enriched within Zelda hubs. Remarkably, these hubs are both short lived and interact only transiently with sites of active Bicoid dependent transcription. Based on our observations we hypothesize that, beyond simply forming bridges between DNA and the transcription machinery, transcription factors can organize other proteins into hubs that transiently drive multiple activities at their gene targets. 1 15 20 25 30 35