Cross-polarized temporal coherence observations of a boreal forest, acquired using a tower-based radar, are presented in this article. Temporal coherence is analyzed with respect to frequency, temporal baseline, time of day of observation, season, meteorological variables, and biophysical variables. During the summer, P-and L-band temporal coherence exhibited diurnal cycles, which appeared to be due to high rates of transpiration and convective winds during the day. During the winter, freezethaw cycles and precipitation resulted in decorrelation. At temporal baselines of seconds to hours, a high temporal coherence was observed even at C-band. The best observation times of the day were midnight and dawn. Temporal coherence is the main limitation of accuracy in interferometric and tomographic forest applications. The observations from this experiment will allow for better spaceborne SAR mission designs for forest applications, better temporal decorrelation modeling, and more accurate forest parameter estimation algorithms using interferometric and tomographic SAR data.