2022
DOI: 10.21203/rs.3.rs-1168251/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Temporal Difference-based Graph Transformer Networks for Air Quality PM2.5 Prediction: A Case Study in China

Abstract: The acceleration of industrialization and urbanization has recently brought about serious air pollution problems, which threaten human health and lives, the environmental safety, and sustainable social development. Air quality prediction is an effective approach for providing early warning of air pollution and supporting cleaner industrial production. However, existing approaches have suffered from a weak ability to capture long-term dependencies and complex relationships from time series PM2.5 data. To addres… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?