The aim of abating seizures in a spatio-temporally selective manner is not a modern one. As early as 150 AD, Pelops from Alexandria, the teacher of Galen, was reported to have aborted what would likely be referred to today as 'a simple partial seizure with sensory-motor manifestations' by tying a ligature around the affected limb at the time of the appearance of the first paroxysmal manifestation.1 Brown-Sequard, 2 Jackson, 3 and, later, Gowers,4 who coined the term 'counter-irritation' to denote a strategy to abate seizures, reintroduced the notion of contingent therapy in the 19th century, an objective that since then and until recently was ignored. After nearly two millennia, the seminal tasks of automated seizure detection and contingent warning and delivery of therapy endowed with realtime feedback capabilities are finally not only feasible but also possibly safe and efficacious. 5 This substantive advance, which at this juncture is in an 'embryonic' developmental stage, attempts to address the lack of efficacy of systemically administered pharmacological agents in a large group of patients with epilepsy, 6 together with the relatively high incidence of serious idiosyncratic or intolerable dose-dependent adverse effects, including exacerbation of seizures, 7 and to decrease the risk of injury and the psychosocial burden resulting from their unpredictability. The medical, psychosocial, and economic benefits that will be derived from achieving these objectives are salutary and self-evident to patients, their care-givers, and healthcare providers.Realtime automated seizure detection, the obligatory condition for implementation of contingent warning and therapies, has been attempted with various degrees of success since the mid-1970s. 8 The rationale for the method/algorithm, 9,10 developed by the group of which these authors are members, and its architecture will be described in some detail for the purpose of shedding light on the process and on the value of signal analyses for the implementation of novel clinical epilepsy therapies. This algorithm is discussed herein simply because it is well understood by these authors.References to and comparisons with other algorithms are not germane, because, to date, a formal evaluation of their performance on a common data set has not been carried out.Simply put, and making allowances for lack of mathematical rigor, this modular, adaptable algorithm separates and quantifies (measuring intensity, duration, and extent of spread) in realtime (as 'things' are happening) the seizure, from the non-seizure content in cortical electrical signals by comparing signal features on two timescales, one short (two seconds), containing ongoing ('foreground') activity, and the other long (30 minutes), containing recent past ('background') activity, which is used as a reference against which the current activity is weighed/quantified. It undertakes two different filtering steps: one discards the non-seizure activity and the other the epileptiform activity that does not qualify as a 'seiz...