Oxidative stress plays a critical role in various physiological and pathological processes, particularly during pregnancy, where it can significantly affect maternal and fetal health. In the context of viral infections, such as those caused by Human Immunodeficiency Virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxidative stress may exacerbate complications by disrupting cellular function and immune responses. Antiviral drugs, while essential in managing these infections, can also contribute to oxidative stress, potentially impacting both the mother and the developing fetus. Understanding the mechanisms by which antivirals can contribute to oxidative stress and examination of pharmacokinetic changes during pregnancy that influence drug metabolism is essential. Some research indicates that antiretroviral drugs can induce oxidative stress and mitochondrial dysfunction during pregnancy, while other studies suggest that their use is generally safe. Therefore, concerns about long-term health effects persist. This review delves into the complex interplay between oxidative stress, antioxidant defenses, and antiviral therapies, focusing on strategies to mitigate potential oxidative damage. By addressing gaps in our understanding, we highlight the importance of balancing antiviral efficacy with the risks of oxidative stress. Moreover, we advocate for further research to develop safer, more effective therapeutic approaches during pregnancy. Understanding these dynamics is essential for optimizing health outcomes for both mother and fetus in the context of viral infections during pregnancy.