Large-scale deep neural networks (DNNs), such as large language models (LLMs), have revolutionized the artificial intelligence (AI) field and become increasingly popular. However, training or fine-tuning such models requires substantial computational power and resources, where the memory capacity of a single acceleration device like a GPU is one of the most important bottlenecks. Owing to the prohibitively large overhead (e.g., 10×) of GPUs' native memory allocator, DNN frameworks like PyTorch and TensorFlow adopt a caching allocator that maintains a memory pool with a splitting mechanism for fast memory (de)allocation. Unfortunately, the caching allocator's efficiency degrades quickly for popular memory reduction techniques such as recomputation, offloading, distributed training, and low-rank adaptation. The primary reason is that those memory reduction techniques introduce frequent and irregular memory * Equal contribution