“…In neurons RAGE promotes the expression of proteins involved in necroptosis (i.e., MLKL) and autophagy (i.e., Becline-1); accordingly, blocking RAGE reduces autophagy, but also increases neuronal sensitivity to injury and apoptosis [ 20 ]. Later, at the subacute phase, TLRs and RAGE activation will polarize microglial cells and infiltrating leukocytes toward a pro-inflammatory phenotype, termed M1, with the release of cytokines such as tumor necrosis factor (TNF), IL-6 or IL-1 and the up-regulation of the inducible NO synthase [ 5 , 11 , 21 , 34 , 37 , 39 ]. Experimental overactivation of RAGE or TLRs by DAMPs injection or an increase in glucose degradation products, such as during hyperglycemia, will in turn increase the cytokine levels and worsen neuronal injuries [ 5 , 11 , 37 ].…”