Objective:The structural alteration that occurs within the salience network (SN) in patients with insular glioma is unclear. Therefore, we aimed to investigate the changes in the topological network and brain structure alterations within the SN in patients with insular glioma.
Methods:We enrolled 46 patients with left insular glioma, 39 patients with right insular glioma, and 21 demographically matched healthy controls (HCs). We compared the topological network, gray matter (GM) volume, and fractional anisotropy (FA) between HCs and patients after controlling for the effects of age and gender.Results: Patients with insular glioma showed topological network decline mainly in the insula, basal ganglia region, and anterior cingulate cortex (ACC). Compared with HCs, patients primarily showed GM volume increased in the ACC, inferior temporal gyrus (ITG), superior temporal gyrus (STG), temporal pole: middle temporal gyrus (TPOmid), insula, middle temporal gyrus (MTG), middle frontal gyrus, and superior occipital gyrus (SOG), but decreased in TPOmid, ITG, temporal pole: superior temporal gyrus, and SOG. FA declined mainly in the STG, MTG, ACC, superior frontal gyrus, and SOG, and also showed an increased cluster in SOG.Conclusions: FA represents the integrity of the white matter. In patients with insular glioma, decreased FA may lead to the destruction of the topological network within the SN, which in turn may lead to the decrease of network efficiency and brain function, and the increase of GM volume may compensate for these changes. Overall, this pattern of structural changes provides new insight into the compensation model of insular glioma.