In order to identify latent bioelectrical oscillators, 15 normal subjects (aged 9-17 years, 8 males, 7 females) were subjected to intermittent photic stimulation. The EEG amplitude spectra corresponding to the 11 fixed frequencies of stimulation presented (3-24 Hz) were combined to form "profiles" of the driving reaction in the right occipital area. The driving response varied with frequency, and was demonstrable in 70-100% of cases (using as criterion peak amplitudes 20% larger than those of the neighbors). The strongest responses were observed at the frequency closest to the alpha peak of the resting EEG. A secondary profile maximum was in the theta band. In 10 subjects, this maximum exceeded half the alpha peak (with an average of 72.4% of the alpha peak), while in the resting spectra, theta amplitudes were much lower than the alpha maxima. This responsiveness in theta activity seems to be characteristic of prepubertal and pubertal subjects. The profiles and resting EEG spectra showed a highly significant Pearson's correlation, with the peak in the theta band of the profiles being the main difference observed between them. The correlation coefficient was significantly correlated with the ratio of the maxima in the theta and alpha bands (R = -0.77, P<0.001). The correlation coefficient between profile and resting spectrum may be a useful indicator in screening methods used to reveal latent cerebral oscillators. Profiles for the second and third harmonics were correlated with those of the first harmonic (fundamental frequency), when considering the corresponding EEG frequencies. Peak frequencies in all three profiles were close to those of the individual's background alpha rhythm, and peak amplitudes in higher harmonics were not much lower than those of the fundamental frequency (mean values of 84 and 63%, for second and third harmonics, respectively).