2020
DOI: 10.48550/arxiv.2011.05227
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Temporal Stochastic Softmax for 3D CNNs: An Application in Facial Expression Recognition

Abstract: Training deep learning models for accurate spatiotemporal recognition of facial expressions in videos requires significant computational resources. For practical reasons, 3D Convolutional Neural Networks (3D CNNs) are usually trained with relatively short clips randomly extracted from videos. However, such uniform sampling is generally sub-optimal because equal importance is assigned to each temporal clip. In this paper, we present a strategy for efficient video-based training of 3D CNNs. It relies on softmax … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?