This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR).
Methods:The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose 4 ), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR.
Results:The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose 4 , and IMR, respectively, which indicates that iDose 4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose 4 and IMR, respectively.
Conclusions:The iDose 4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose 4 , and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.