Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Phyllostachys praecox is a valuable tree species in karst ecosystems, but improper mulching practices can worsen soil degradation. Understanding soil nutrient limitations is crucial for successful restoration and sustainable development. However, it remains unclear whether and how mulching management of Phyllostachys praecox affects soil enzyme stoichiometry and nutrient limitation in karst areas. Here, we conducted a field experiment in Chongqing karst bamboo forest ecosystems with four mulching treatments: 1-year (T1), 2-years (T2), 1-year and recovery and 1-year (T3), and no mulching (CK). We investigated the activities of the C-acquiring enzyme β-1,4-glucosidase (BG), N-acquiring enzymes L-leucine aminopeptidase (LAP) and β-1,4-N-acetylglucosaminidase (BNA), as well as P-acquiring enzyme phosphatase activity (AP), to assess the limitations of C, N or P and identify the main factors influencing soil microbial nutrient limitation. Compared with the CK treatment, both the T2 and T3 management treatments significantly increased the SOC, TN, MBC, and MBN. Furthermore, the soil enzyme stoichiometric ratio in the karst bamboo forests deviated from the global ecosystem ratio of 1:1:1. T1 > T3 > CK > T2 presented higher values of C/(C + N) and C/(C + P), with T1 having values that were 1.10 and 1.12 greater than those of T2, respectively. Additionally, there was a significant negative correlation between microbial C and N limitations and total nutrients, but a positive correlation with microbial biomass ratios. In conclusion, changes in mulching management of Phyllostachys praecox affect soil enzyme stoichiometry activities and their ratios by influencing total nutrients and microbial biomass ratios. This study suggests an alternate year cover pattern (mulching in one year and resting in the next) as a scientific management approach for bamboo forests, contributing to a better understanding of nutrient limitation mechanisms in karst bamboo forest ecosystems.
Phyllostachys praecox is a valuable tree species in karst ecosystems, but improper mulching practices can worsen soil degradation. Understanding soil nutrient limitations is crucial for successful restoration and sustainable development. However, it remains unclear whether and how mulching management of Phyllostachys praecox affects soil enzyme stoichiometry and nutrient limitation in karst areas. Here, we conducted a field experiment in Chongqing karst bamboo forest ecosystems with four mulching treatments: 1-year (T1), 2-years (T2), 1-year and recovery and 1-year (T3), and no mulching (CK). We investigated the activities of the C-acquiring enzyme β-1,4-glucosidase (BG), N-acquiring enzymes L-leucine aminopeptidase (LAP) and β-1,4-N-acetylglucosaminidase (BNA), as well as P-acquiring enzyme phosphatase activity (AP), to assess the limitations of C, N or P and identify the main factors influencing soil microbial nutrient limitation. Compared with the CK treatment, both the T2 and T3 management treatments significantly increased the SOC, TN, MBC, and MBN. Furthermore, the soil enzyme stoichiometric ratio in the karst bamboo forests deviated from the global ecosystem ratio of 1:1:1. T1 > T3 > CK > T2 presented higher values of C/(C + N) and C/(C + P), with T1 having values that were 1.10 and 1.12 greater than those of T2, respectively. Additionally, there was a significant negative correlation between microbial C and N limitations and total nutrients, but a positive correlation with microbial biomass ratios. In conclusion, changes in mulching management of Phyllostachys praecox affect soil enzyme stoichiometry activities and their ratios by influencing total nutrients and microbial biomass ratios. This study suggests an alternate year cover pattern (mulching in one year and resting in the next) as a scientific management approach for bamboo forests, contributing to a better understanding of nutrient limitation mechanisms in karst bamboo forest ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.