Abstract. Data from seven cruises in three different environments including the Pearl River estuary, sewage discharge outfall, and eastern coastal/shelf waters were used to examine the seasonal variations in net community production (NCP) and the biologically active gases O 2 and CO 2 . In the winter dry season, when monsoon-induced downwelling was dominant, NCP was negative (−84 ± 50 mmol C m −2 d −1 ) in all three regions. The negative NCP corresponded to O 2 influxes of 100 ± 50 mmol O 2 m −2 d −1 and CO 2 effluxes of 24 ± 10 mmol C m −2 d −1 . In the summer wet season, when upwelling brought the deep oceanic waters to the coast due to the southwest monsoonal winds, there was a 2 to 15-fold increase in integrated primary production (IPP) compared to winter. The increase in IPP was likely due to the favorable conditions such as stratification and the nutrient inputs from upwelled waters and the Pearl River estuary. NCP in the mixed layer reached up to 110 ± 48 mmol C m −2 d −1 in the wet season. However, accompanying the high positive NCP, we observed an O 2 influx of 100 ± 60 mmol O 2 m −2 d −1 and CO 2 efflux of 21 ± 15 mmol C m −2 d −1 . The contradictory observation of positive NCP and CO 2 release and O 2 uptake in the mixed layer could be explained by the influence of the southwest monsoon-induced upwelling along with the influence of the Pearl River, as the upwelling brought cold, low dissolved oxygen (DO, 160 ± 30 µM) and high dissolved inorganic carbon (DIC, 1960 ± 100 µatm) water to the surface in the wet season. Hence, the subtropical Hong KongCorrespondence to: K. Yin (yinkd@mail.sysu.edu.cn) coastal waters are generally a CO 2 source due to the monsoonal influence during both the dry-heterotrophic and wetautotrophic seasons.