In recent years, the extinct nuclide 182Hf-182W system has been developed as an essential tool to date and trace the lunar origin and evolution. Despite a series of achievements, controversies and problems exist. As a review, this paper details the application principles of the 182Hf-182W isotope system and summarizes the research development on W isotopes of the Moon. A significant radiogenic ε182W excess of 0.24 ± 0.01 was found in the lunar mantle, leading to heated debates. There are three main explanations for the origin of the excess, including (1) radioactive origin; (2) the mantle of the Moon-forming impactor; and (3) disproportional late accretion to the Earth and the Moon. Debates on these explanations have revealed different views on lunar age. The reported ages of the Moon are mainly divided into two views: an early Moon (30–70 Ma after the solar system formation); and a late Moon (>70 Ma after the solar system formation). This paper discusses the possible effects on lunar 182W composition, including the Moon-forming impactor, late veneer, and Oceanus Procellarum-forming projectile. Finally, the unexpected isotopic similarities between the Earth and Moon are discussed.