Cortical representations underlying a wide range of cognitive abilities, which employ both rate and spike timing-based coding, emerge from underlying cortical circuits with a tremendous diversity of cell types. However, cell-type specific contributions to cortical coding are not well-understood. Here, we investigate the role of parvalbumin (PV) neurons in cortical complex scene analysis. Many complex scenes contain sensory stimuli, e.g., natural sounds, images, odors or vibrations, which are highly dynamic in time, competing with stimuli at other locations in space. PV neurons are thought to play a fundamental role in sculpting cortical temporal dynamics; yet their specific role in encoding complex scenes via timing-based codes, and the robustness of such temporal representations to spatial competition, have not been investigated. Here, we address these questions in auditory cortex using a cocktail party-like paradigm; integrating electrophysiology, optogenetic manipulations, and a family of novel spike-distance metrics, to dissect the contributions of PV neurons towards rate and timing-based coding. We find that PV neurons improve cortical discrimination of dynamic naturalistic sounds in a cocktail party-like setting by enhancing rapid temporal modulations in rate and spike timing reproducibility. Moreover, this temporal representation is maintained in the face of competing stimuli at other spatial locations, providing a robust code for complex scene analysis. These findings provide novel insights into the specific contributions of PV neurons in cortical coding of complex scenes.