Temporally-preserving latent variable models: Offline and online training for reconstruction and interpretation of fault data for gearbox condition monitoring
Ryan Balshaw,
P. Stephan Heyns,
Daniel N. Wilke
et al.
Abstract:Latent variable models can effectively determine the condition of essential rotating machinery without needing labelled data. These models analyse vibration data via an unsupervised learning strategy. Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task. In a temporal-preserving context, two approaches exist to develop a condition-monitoring methodology: offline and online. For latent variable models, the available training modes are no different. While many … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.