Much guidance on statistical training in STEM fields has been focused largely on the undergraduate cohort, with graduate education often being absent from the equation. Training in quantitative methods and reasoning is critical for graduate students in biomedical and science programs to foster reproducible and responsible research practices. We argue that graduate student education should more center around fundamental reasoning and integration skills rather than mainly on listing 1 statistical test method after the other without conveying the bigger context picture or critical argumentation skills that will enable student to improve research integrity through rigorous practice. Herein, we describe the approach we take in a quantitative reasoning course in the R3 program at the Johns Hopkins Bloomberg School of Public Health, with an error-focused lens, based on visualization and communication competencies. Specifically, we take this perspective stemming from the discussed causes of irreproducibility and apply it specifically to the many aspects of good statistical practice in science, ranging from experimental design to data collection and analysis, and conclusions drawn from the data. We also provide tips and guidelines for the implementation and adaptation of our course material to various graduate biomedical and STEM science programs.