Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Summary A coiled-tubing (CT)-acid-tunneling-stimulation technique has been successfully applied in the preceding 15 years on limestone and dolomite reservoirs around the world (the Middle East, southeast Asia, North America, South America, and Europe). Several case histories were presented in the past showing that this technique might bring significant benefits over other carbonate-stimulation methods in openhole wells. In this paper, the parameters affecting the predicted and achieved tunnel lengths are discussed for the first time. The acid-tunneling technique consists of pumping hydrochloric acid (HCl) through conventional CT and a bottomhole assembly (BHA) with jetting nozzles to create (without drilling) stable drainage holes (tunnels) into the reservoir pay zone. The BHA also includes a special kickoff tool, with two pressure-activated bending joints, that controls the tunnel-creation direction. The acid that is not consumed during the main tunneling process leaks into the reservoir rock, creating wormholes that improve the connectivity between the reservoir and the wellbore and positively influence well production. This acid-tunneling technique can potentially create numerous tunnels with different depths. The optimization of the tunnel-creation-depth selection is made by production-software simulation using such critical information as the well parameters (trajectory and size), available logs (image, resistivity, caliper, drilling), and past reservoir information. The results from many field case histories involving the CT acid-tunneling technique from around the world were presented previously. However, many questions remain unanswered regarding the actual downhole tunnel-initiation/creation process. In this study, a detailed discussion of acid-tunneling modeling is included to answer some of those questions. The parameters affecting the predicted tunnel lengths and the parameters that could be monitored or adjusted to create the tunnels smoothly are discussed. This paper describes the CT acid-tunneling technology and discusses some of the most important questions regarding downhole CT acid-tunneling creation. The acid-tunneling-technique performance and benefits confirmed during field operations are presented.
Summary A coiled-tubing (CT)-acid-tunneling-stimulation technique has been successfully applied in the preceding 15 years on limestone and dolomite reservoirs around the world (the Middle East, southeast Asia, North America, South America, and Europe). Several case histories were presented in the past showing that this technique might bring significant benefits over other carbonate-stimulation methods in openhole wells. In this paper, the parameters affecting the predicted and achieved tunnel lengths are discussed for the first time. The acid-tunneling technique consists of pumping hydrochloric acid (HCl) through conventional CT and a bottomhole assembly (BHA) with jetting nozzles to create (without drilling) stable drainage holes (tunnels) into the reservoir pay zone. The BHA also includes a special kickoff tool, with two pressure-activated bending joints, that controls the tunnel-creation direction. The acid that is not consumed during the main tunneling process leaks into the reservoir rock, creating wormholes that improve the connectivity between the reservoir and the wellbore and positively influence well production. This acid-tunneling technique can potentially create numerous tunnels with different depths. The optimization of the tunnel-creation-depth selection is made by production-software simulation using such critical information as the well parameters (trajectory and size), available logs (image, resistivity, caliper, drilling), and past reservoir information. The results from many field case histories involving the CT acid-tunneling technique from around the world were presented previously. However, many questions remain unanswered regarding the actual downhole tunnel-initiation/creation process. In this study, a detailed discussion of acid-tunneling modeling is included to answer some of those questions. The parameters affecting the predicted tunnel lengths and the parameters that could be monitored or adjusted to create the tunnels smoothly are discussed. This paper describes the CT acid-tunneling technology and discusses some of the most important questions regarding downhole CT acid-tunneling creation. The acid-tunneling-technique performance and benefits confirmed during field operations are presented.
Development of unconventional reservoirs in North America has increased significantly over the past decade. The increased activity in this space has provided significant data with respect to through-tubing drillouts which had previously not been attainable. This paper is focused on using the field data from the Montney and Duvernay formations along with laboratory data and numerical modeling to understand the hole cleanout associated with through-tubing drillouts of frac plugs. Initially, an extensive full-scale flow loop laboratory testing program was conducted to obtain data on debris transportation for hole cleanout during through-tubing applications. The testing was conducted on various coiled tubing (CT)-production tubing configurations using various solid particles. The laboratory data was used to develop empirical correlations needed for a transient debris transport model. This model was then used for frac plug drillouts to ensure successful hole cleaning in actual field applications. Computational fluid dynamics (CFD) modelling was also used to further understand and quantify the differences between the laboratory data, field data and transient debris transport model results. The objective of the work conducted was to gain a better understanding of debris transport and validate the empirical modelling approach developed for hole cleaning. The validation process was conducted in several stages. The first stage was to validate the laboratory data against the Montney and Duvernay field data. The second stage was to verify the results obtained from the empirical model against the results obtained from a computational fluid dynamic model. The results from both modelling approaches were lastly compared to the field data. All these results challenge the current industry's understanding and best practices for through-tubing drillouts in the Montney and Duvernay formations. With the contentious increase of lateral lengths and higher stage counts, the process of drilling out frac plugs has become more complex. This study explicitly benefits all operators in their ever-increasing need to understand their frac plug drillout operations to ensure efficient, cost effective, and most importantly, consistent and repeatable results. While efficient results for frac plug drillout operations have been accomplished to date, the on-going feedback from the field has been the requirement to produce repeatable drillouts. This paper is the first to show a holistic approach for obtaining a transient debris transport model used for through-tubing drillouts of frac plugs. The novelty also consists of the transient debris transport model validation through laboratory data and actual Montney and Duvernay field data.
Acid-tunneling is an acid jetting method for stimulating carbonate reservoirs. Several case histories from around the world were presented in the past showing optimistic post-stimulation production increases in open-hole wells, comparing to conventional coiled tubing (CT) acid jetting, matrix acidizing, and acid fracturing. However, many questions about the actual tunnel creation and tunneling efficiency are still not answered. In this paper, the results of an innovative full-scale research program involving water and acid jetting are reported for the first time. The tunnels are constructed through chemical reaction and mechanical erosion by pumping hydrochloric (HCl) acid through conventional CT and a bottom-hole assembly (BHA) with jetting nozzles and two pressure-activated bending joints that control the tunnel initiation directions. If the jetting speed is too high and the acid is not consumed in front of the BHA during the main tunneling process, then unspent acid flows toward the back of the BHA and creates main wellbore and tunnel enlargement with potential wormholes as fluid leaks off, lowering the tunneling length efficiency. Full-scale water and acid jetting tests were performed on Indiana limestone cores with 2-4 mD permeability and 12-14% porosity. Many field-realistic combinations of nozzle sizes, jetting speeds, and back pressures were included in the testing program. The cores were 3.75-in. in diameter by 6-in. in length for the water tests, and 12-in. in diameter by 18-in. in length for the tests with 15-wt% HCl acid. The jetting BHA was moved as the tunnels were constructed, at constant force on the nozzle mole, to minimize the nozzle stand-off distance. Six acid tests were performed at the ambient temperature of 46F and two at 97F. The results from the acid tests show that the acid tunneling efficiency can be optimized by reducing the nozzle size and pump rate. The results from the water and acid tests with exactly the same parameters to match the actual CT operations in the field show that the tunnels are constructed mostly by chemical reaction and not by mechanical erosion. The acid tunneling efficiencies obtained from the full-scale acid tests are superior to the average tunneling efficiency of more than 500 actual tunnels constructed during more than 100 acid tunneling operations performed to date worldwide. The paper describes the full-scale water and acid jetting tests on Indiana limestone cores. The major novelty of this test program consists of performing all measurements with back pressure, unlike all previous water and acid jetting studies reported in literature, to more accurately mimic the downhole well conditions. The novel understanding of the combined effect of the nozzle size, pump rate, and back pressure significantly improves the actual acid-tunneling efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.