The beef forequarter muscle comprises approximately 52% of carcass weight. The objective of this study was to evaluate the physiochemical characteristics and meat color from forequarter muscle of Holstein steers. Fifteen forequarter muscles were trimmed of external connective tissue and fat. An experimental group of eight Holstein steers was assessed using meat color, water-holding capacity, drip loss, and Warner–Bratzler shear force value at the same quality grade. The M. omotransversarius (0.45 kg) had the highest (p<0.05) lightness (L*) value, whereas the M. teres major (0.4 kg) and M. triceps brachii (caput laterale) (0.52 kg) had the lowest (p<0.05) values. The M. semispanitus capitus (1.48 kg), which is a neck muscle, had the highest values for both redness (a*) and yellowness (b*), whereas the lowest (p<0.05) values were for the M. teres major. The M. omotransversarius, M. latissimus dorsi (1.68 kg), and M. rhomboideus (1.2 kg) were ranked high (p<0.05) in water-holding capacity. The drip loss value was the highest for the M. longissimus dorsi thoracis (p<0.05; 1.86 kg), while the M. infraspinatus (2.28 kg), M. supraspinatus (1.38 kg), M. brachiocephalicus (1.01 kg), and M. pectoralis superficialis (1.18 kg) had the lowest (p<0.05). The Warner–Bratzler shear force value indicated that the M. pectoralis profundus (3.39 kg), M. omotransversarius, and M. brachiocephalicus were the toughest (p<0.05), whereas the M. subscapularis (0.86 kg), M. longissimus dorsi thoracis, M. teres major, and M. infraspinatus were the most tender cuts (p<0.05). Here, muscle type explained most of the variability in the forequarter physiochemical characteristics. Thus, our findings suggest that these muscle profile data will allow for more informed decisions when selecting individual muscles to produce value-added products from Holstein steers.