There has been a growing interest in the development of energy-specific collimators for low-energy pencil beam scanning (PBS) to reduce the lateral penumbra. One particular device that has been the focus of several recent published works is the dynamic collimation system (DCS), which provides energy-specific collimation by intercepting the scanned proton beam as it nears to target edge with a set of orthogonal trimmer blades. While several computational studies have shown that this dynamic collimator can provide additional healthy tissue sparing, there has not been any rigorous experimental work to benchmark the theoretical models used in these initial studies. Therefore, it was the purpose of this work to demonstrate an experimental method that could integrate an experimental prototype with a clinical PBS system and benchmark the Monte Carlo methods that have been used to model the DCS. Methods: An experimental DCS prototype was designed and built in house to actively collimate individual proton beamlets during PBS within a well-characterized experimental setup. Monte Carlo methods were initially used to assess construction tolerances and later benchmarked against measurements, including integral depth dose and lateral asymmetric beamlet profiles. The experimental apparatus and measurement geometry were modeled using MCNP6 benchmarked from measurements performed at the Northwestern Chicago Proton Center. Results: Gamma analysis tests were used to evaluate the agreement between the measured and simulated profiles with a strict 1 mm/1% criteria and 5% dose threshold. Excellent agreement was observed between the simulated and measured profiles, which included 1 mm/1% gamma analysis pass rates of at least 100% and 95% for the integral depth dose (IDD) profiles and lateral profiles, respectively. Differences in the relative profile shape were observed experimentally between beamlets collimated on-and off-axis, which was attributed to the partial transmission of the beam through an unfocused collimator. Exposure rates resulting from the activation of the device were monitored with survey meter measurements and were found to agree with Monte Carlo estimates of the exposure rate to within 20%. Conclusion: A DCS prototype was constructed and integrated into a clinical dose delivery system. While the results of this work are not exhaustive, they demonstrate the effects of beam source divergence, device activation, and beamlet deflection during scanning, which were found to be successfully modeled using Monte Carlo methods and experimentally benchmarked. Excellent agreement was achieved between the simulated and measured lateral spot profiles of collimated beamlets delivered on-and off-axis in PBS. The Monte Carlo models adequately predicted the measured elevated plateau region in the integral depth-dose profiles from the low-energy scatter off the collimators.