This study proposes a quantitative method for predicting fatigue limit reliability of a notched metal containing inhomogeneities. Since the fatigue fracture origin of the notched metal cannot be determined in advance because of stress nonuniformity, randomly distributed particles, and scatter of a matrix, it is difficult to predict the fatigue limit. The present method utilizes a stress-strength model incorporating the "statistical hardness characteristics of a matrix under small indentation loads" and the "statistical hardness characteristics required for non-propagation of fatigue cracks from microstructural defects". The notch root is subdivided into small elements to eliminate the stress nonuniformity. The fatigue limit reliability is predicted by unifying the survival rates of the elements obtained by the stress-strength model according to the weakest link model. The method is applied to notched specimens of aluminum cast alloy JIS AC4B-T6 containing eutectic Si, Fe compounds and porosity. The fatigue strength reliability at 10 7 cycles, which corresponds to the fatigue limit reliability, is predicted. The fatigue limits of notch root radius ρ = 2, 1, 0.3, and 0.1 mm are obtained by rotating-bending fatigue tests. It is shown that the fatigue limits predicted by the present method are in good agreement with the experimental ones.