Mold oscillation is a key technology of steel continuous casting. Sinusoidal oscillation and non-sinusoidal oscillation are widely used in actual production. Non-sinusoidal oscillation has many advantages compared with the sinusoidal oscillation, such as it can reduce the depth of oscillation mark, and make slab demoulding easily. But the maximum acceleration of non-sinusoidal oscillation is higher, which will result in the larger inertia force, influence on the service life and running smoothly of the oscillator. The modification ratio of the non-sinusoidal oscillation is bigger, the impact and noise of the oscillator are more serious especially when the mold arrives at the top and bottom position. To control the maximum acceleration of the non-sinusoidal oscillation waveform, a novel waveform function with three sections was proposed. And the displacement, velocity and acceleration curves were continuous and smooth, which had no rigid and flexible impact. Thus, it had good dynamic characteristics and realized the switching between the sinusoidal and the non-sinusoidal oscillation. Then the proposed oscillation waveform function was realized by a mechanical oscillator with double servomotors arranged symmetry. Meanwhile, the angular speed of the servomotor to realize the oscillation waveform was presented and the tested curves were obtained by the experiment. The experiment results show that the oscillation waveform can be realized well, the vertical maximum acceleration of the proposed function is reduced by 13.6%, which is helpful to reduce the inertia force, enhance the motion stability and prolong the service life of the oscillator.