2002
DOI: 10.1002/pen.11007
|View full text |Cite
|
Sign up to set email alerts
|

Tensile modulus of polymer nanocomposites

Abstract: Based on Takayanagi's two‐phase model, a three‐phase model including the matrix, interfacial region, and fillers is proposed to calculate the tensile modulus of polymer nanocomposites (Ec). In this model, fillers (sphere‐, cylinder‐ or plateshape) are randomly distributed in a matrix. If the particulate size is in the range of nanometers, the interfacial region will play an important role in the modulus of the composites. Important system parameters include the dispersed particle size (t), shape, thickness of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

7
227
2
1

Year Published

2005
2005
2018
2018

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 355 publications
(237 citation statements)
references
References 37 publications
7
227
2
1
Order By: Relevance
“…However, Ji et al have theoretically proved that there is a critical size for fillers in nylon 6/montmorillonite nanocomposites, below which the filler size can affect the stiffness (Fig. 2) [41]. This phenomenon has been experimentally proved in separate studies [42,43].…”
Section: Effect Of Filler Size and Shapementioning
confidence: 97%
“…However, Ji et al have theoretically proved that there is a critical size for fillers in nylon 6/montmorillonite nanocomposites, below which the filler size can affect the stiffness (Fig. 2) [41]. This phenomenon has been experimentally proved in separate studies [42,43].…”
Section: Effect Of Filler Size and Shapementioning
confidence: 97%
“…For PNC the controlling parameters are: the size of dispersed particles (t c and c ), thickness of the interfacial region , filler-to-matrix modulus ratio E f /E m , and the parameter k. The parameter k represents the ultimate modulus ratio of the interphase to matrix, assuming a linear gradient change in modulus between the matrix and the surface of particle -the value k ϭ 12 has been arbitrarily chosen [32].…”
Section: Theoretical Analysis Of Young's Modulusmentioning
confidence: 99%
“…Ji et al [32] adopted the Takayanagi et al [29] two-phase model, expanding it into three phases: matrix, interphase, and filler particles randomly distributed in the matrix. These may be of any shape, viz.…”
Section: Theoretical Analysis Of Young's Modulusmentioning
confidence: 99%
See 1 more Smart Citation
“…A desordem causada na organização cristalina da argila, devido à entrada das cadeias poliméricas em sua estrutura, aumenta ainda mais este espaçamento, podendo levar à esfoliação das lamelas (Figura 3) [1,2] . organofílica advêm da íntima interface polímero-carga proporcionada pela forte interação em escala nanométrica [8,[13][14][15][16][17] . O emprego de quantidades reduzidas dessas nanocargas sugere preservação das propriedades da matriz polimérica aliada ao ganho em certas características do nanomaterial sobre o polímero puro.…”
Section: Difração De Raios Xunclassified