In this study, the phase transformation temperature of 15Cr12MoVWN ferritic/martensitic steel was determined by differential scanning calorimetry to provide a theoretical basis for the design of a heat treatment process. An orthogonal design experiment was performed to investigate the relationship between microstructure and heat treatment parameters, i.e., normalizing temperature, cooling method and tempering temperature by evaluating the room-temperature and elevated-temperature tensile properties, and the optimum heat treatment parameters were determined. It is shown that the optimized heat treatment process was composed of normalizing at 1050 °C followed by air cooling to room temperature and tempering at 700 °C. Under the optimum heat treatment condition, the room-temperature tensile properties were 1014 MPa (UTS), 810.5 MPa (YS) and 18.8% (elongation), while the values are 577.5 MPa (UTS), 469 MPa (YS) and 39.8% (elongation) tested at 550 °C. The microstructural examination shows that the strengthening contributions from microstructural factors were the martensitic lath width, dislocations, M23C6, MX and grain boundaries of prior austenite grain (PAG) in a descending order. The main factors influencing the tensile strength of 15Cr12MoVWN steel were the martensitic lath width and dislocations.