Geocell is widely used in the treatment of poor roadbed, which can restrain soil laterally and improve the stability of soil. In cold area engineering, a change in temperature can influence the mechanical properties of geocell of different materials. To study the mechanical response of geocell at low temperatures, three types of geocell strips commonly used in engineering, namely the polyethylene (HDPE), polypropylene (PP), and polyester (PET), were studied via the uniaxial tensile test at the ambient temperatures of −5 °C, −20 °C, and −35 °C, respectively. Meanwhile, the tensile strength, fracture mode, and temperature sensitivity of geocell specimens were compared. It is concluded that: (1) at low temperatures, the tensile strengths of HDPE and PET geocell strips are significantly improved, while that of the PP geocell strip is less sensitive to the temperature. (2) The PP geocell is subject to a brittle failure at all ambient temperatures. The PET geocell strip experiences a hard-ductile failure at normal temperatures of −5 °C and −20 °C. While in the tensile test at −35 °C, it is prone to brittle failure and hard-ductile failure. The HDPE geocell strip suffers from ductile failure at all ambient temperatures. (3) At low temperatures, overall, the tensile properties of the PET geocell strip is better than those of the PP and HDPE geocell strips.