2016
DOI: 10.5194/isprs-archives-xli-b3-283-2016
|View full text |Cite
|
Sign up to set email alerts
|

TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

Abstract: ABSTRACT:Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the "raw" data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the ini… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 16 publications
(7 reference statements)
0
1
0
1
Order By: Relevance
“…Li ve diğ. , LiDAR verisini [21] ve LiDAR noktalar bulutunu [22] kullanarak yüksek seviyeli tensör özelliklerini elde etmişler ve bunları sınıflandırma başarımını artırmak için kullanmışlardır. Xiong ve diğ.…”
Section: Introductionunclassified
“…Li ve diğ. , LiDAR verisini [21] ve LiDAR noktalar bulutunu [22] kullanarak yüksek seviyeli tensör özelliklerini elde etmişler ve bunları sınıflandırma başarımını artırmak için kullanmışlardır. Xiong ve diğ.…”
Section: Introductionunclassified
“…In the most active area, with three-dimensional information, such as a 3D object [29], hyperspectral cube [30], or gait video sequence [31] with three modes following the x-axis, y-axis, and z-axis, a third-order tensor, has been noted as an important point of study [32][33][34]. Individual identification using ECG signals can be also considered as a multilinear tensor space with temporal dimension.…”
Section: Introductionmentioning
confidence: 99%