2021
DOI: 10.13189/ms.2021.090322
|View full text |Cite
|
Sign up to set email alerts
|

Tensor Multivariate Trace Inequalities and Their Applications

Abstract: In linear algebra, the trace of a square matrix is defined as the sum of elements on the main diagonal. The trace of a matrix is the sum of its eigenvalues (counted with multiplicities), and it is invariant under the change of basis. This characterization can be used to define the trace of a tensor in general. Trace inequalities are mathematical relations between different multivariate trace functionals involving linear operators. These relations are straightforward equalities if the involved linear operators … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 14 publications
0
0
0
Order By: Relevance