One potential source of starch is the tropical legume baby lima bean (Phaseolus lunatus) that contains around 56—60% of starch. The objectives of this work were to evaluate this starch's physicochemical and functional properties and compare it with the properties of other starches. The chemical composition of lima bean starch was: 10.16% moisture, 0.20% protein, 0.67% fiber, 0.14% ash, 0.54% fat, 98.43% starch and 0.013% phosphorus. The amylose content was higher (32.7%) than that of other cereal and tuber starches but similar to other legume starches. The average granule size (diameter 17.9 μm) was comparable to that of corn starch and of other legume starches. The granule was heterogeneous, presenting an oval shape. The gelatinization temperature was 80.16 °C (range 75—87 °CC), which is similar to other legume starches but higher than that of corn starch. The molecular size (alkali number 3.22), was smaller than that of potato starch but similar to that of corn starch. Compared to corn starch, the gels were firmer and presented a higher degree of retrogradation even at high concentrations. The water solubility was positively correlated with the temperature: i.e., 1.8, 3.4, 8.5 and 12.3% at 60, 70, 80 and 90 °C, respectively. The swelling power had the same behaviour: 2.6, 3.3,12.8 and 19.9 g of water/per gram of starch at 60, 70, 80 and 90 °C, respectively. The amylogram showed that the viscosity (680 Brabender units) and stability were higher than those of commercial corn starch (252 Brabender units). The use of this starch in the preparation of syrups with high glucose contents, as well as in baked and canned products that require heating, is suggested.