Hundreds of nanometer-thick metal layers are used as electrical conductors in various technologies and research fields. The intensity of the radiation transmitted by such devices is a small fraction and is often neglected. Here, it is shown that intense terahertz time-domain spectroscopy can probe the absolute electro-optical properties of a 100 nm thick gold sample in transmission geometry without the need to apply electrical contacts or handle wires. The terahertz conductivity of the metal film agrees with that obtained from standard contact measurements of the static component within the error bars. This experimental approach can help to quantify the electrical properties of opaque and conductive materials such as the composite electrodes used in photovoltaic or electrochemical applications, and in the quality control of metal films.