Two of mitogen-activated protein kinases (MAPK), p44mapk /p42 mapk extracellular signal-regulated kinases (ERK1/2), translocate into nuclei following activation and play critical roles in connecting the signal to gene expression and allowing cell-cycle entry. Here we found that the nuclear translocation of ERK1/2 in response to growth stimuli was significantly inhibited in senescent cells that were irreversibly growth arrested, compared with presenescent cells. The activation step of these enzymes was not impaired, since ERK1/2 were phosphorylated and activated in senescent cells as efficiently as in presenescent cells. By elaborately localizing ERK2 in the nuclei of senescent cells, we could restore c-fos transcriptional activity upon growth stimuli, which was repressed in senescent cells. Furthermore, the nuclear localization of ERK1/2 has been suggested to potentiate the proliferative activity of the senescent cells in collaboration with adenovirus E1A protein. More importantly, SV40 large T antigen, the strong inducer of DNA synthesis, had the inherent ability to restore nuclear relocalization of active ERK1/2 in senescent cells, which was essentially required for the reinitiation of DNA synthesis. Thus, manipulating the relocalization of ERK1/2 into nuclei was expected to open the way to overcome some of the senescent phenotypes.