Western Mongolia is a structurally complicated and little-studied portion of the central Asia tectonic collage, yet contains well-exposed sequences ofMesozoic sedimentary strata that preserve an important record of ancient intraplate deformation. In order to document the record of Mesozoic sedimentary basin development and to provide a basis for interpreting the sedimentary record of intraplate deformation, we studied the sedimentology and provenance of Mesozoic strata at four locations in western Mongolia. Triassic sedimentary strata are missing across the study area, and Lower Jurassic strata unconformably overlie older rocks of various ages. Lower to Middle Jurassic basin fill in the northern portion of the study area is dominated by coarse, granite-bearing conglomerate and arkosic sandstone (Qm 35 F 49 L 16 ) with a volcanic-dominated lithic fraction (Qp 22 Lvm 63 Lsm 15 ). Paleocurrent indicators suggest southwest-directed sediment transport, reflecting uplift of an ancestral version of the Hanhöhiy Uul, a mountain range located north and east of the study area and composed mainly of Cambrian granite and associated volcanics. In the central portion of the study area, Lower to Middle Jurassic strata comprise an upward-fining kilometer-thick sequence from coarse matrix-supported fanglomerate to fine sandstone, shale, and coal suggestive of a mudload-dominated, meandering fluvial environment. Conglomerate clasts are dominantly basalt and granite, and sandstone is arkosic with higher QmFL%L and Qp-Lvm-Lsm%Lsm than equivalent sandstone to the north (Qm 41 F 35 L 24 ; Qp 24 Lvm 41 Lsm 35 ). Paleocurrent indicators suggest transport to the south-southwest. In the southernmost part of the study area, Lower through Upper Jurassic strata record a transition from mudload-dominated fluvial environments with abundant organic matter to fluvial flood-plain and/or mud flat with little organic matter and abundant calcisols. These strata are sharply overlain by