Body mass is a key parameter for understanding the physiology, biomechanics, and ecology of an organism. Within paleontology, body mass is a fundamental prerequisite for many studies considering body-size evolution, survivorship patterns, and the occurrence of dwarfism and gigantism. The conventional method for estimating fossil body mass relies on allometric scaling relationships derived from skeletal metrics of extant taxa, but the recent application of three-dimensional imaging techniques to paleontology (e.g., surface laser scanning, computed tomography, and photogrammetry) has allowed for the rapid digitization of fossil specimens. Volumetric body-mass estimation methods based on whole articulated skeletons are therefore becoming increasingly popular. Volume-based approaches offer several advantages, including the ability to reconstruct body-mass distribution around the body, and their relative insensitivity to particularly robust or gracile elements, i.e., the so-called 'one bone effect.' Yet their application to the fossil record will always be limited by the paucity of well-preserved specimens. Furthermore, uncertainties with regards to skeletal articulation, body density, and soft-tissue distribution must be acknowledged and their effects quantified. Future work should focus on extant taxa to improve our understanding of body composition and increase confidence in volumetric model input parameters.