Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the fields of environment and transportation, the aerodynamic noise emissions emitted from heavy-duty diesel engine turbocharger compressors are of great harm to the environment and human health, which needs to be addressed urgently. However, for the study of compressor aerodynamic noise, particularly at the full operating range, experimental or numerical simulation methods are costly or long-period, which do not match engineering requirements. To fill this gap, a method based on ensemble learning is proposed to predict aerodynamic noise. In this study, 10,773 datasets were collected to establish and normalize an aerodynamic noise dataset. Four ensemble learning algorithms (random forest, extreme gradient boosting, categorical boosting (CatBoost) and light gradient boosting machine) were applied to establish the mapping functions between the total sound pressure level (SPL) of the aerodynamic noise and the speed, mass flow rate, pressure ratio and frequency of the compressor. The results showed that, among the four models, the CatBoost model had the best prediction performance with a correlation coefficient and root mean square error of 0.984798 and 0.000628, respectively. In addition, the error between the predicted total SPL and the observed value was the smallest, at only 0.37%. Therefore, the method based on the CatBoost algorithm to predict aerodynamic noise is proposed. For different operating points of the compressor, the CatBoost model had high prediction accuracy. The noise contour cloud in the predicted MAP from the CatBoost model was better at characterizing the variation in the total SPL. The maximum and minimum total SPLs were 122.53 dB and 115.42 dB, respectively. To further interpret the model, an analysis conducted by applying the Shapley Additive Explanation algorithm showed that frequency significantly affected the SPL, while the speed, mass flow rate and pressure ratio had little effect on the SPL. Therefore, the proposed method based on the CatBoost algorithm could well predict aerodynamic noise emissions from a turbocharger compressor.
In the fields of environment and transportation, the aerodynamic noise emissions emitted from heavy-duty diesel engine turbocharger compressors are of great harm to the environment and human health, which needs to be addressed urgently. However, for the study of compressor aerodynamic noise, particularly at the full operating range, experimental or numerical simulation methods are costly or long-period, which do not match engineering requirements. To fill this gap, a method based on ensemble learning is proposed to predict aerodynamic noise. In this study, 10,773 datasets were collected to establish and normalize an aerodynamic noise dataset. Four ensemble learning algorithms (random forest, extreme gradient boosting, categorical boosting (CatBoost) and light gradient boosting machine) were applied to establish the mapping functions between the total sound pressure level (SPL) of the aerodynamic noise and the speed, mass flow rate, pressure ratio and frequency of the compressor. The results showed that, among the four models, the CatBoost model had the best prediction performance with a correlation coefficient and root mean square error of 0.984798 and 0.000628, respectively. In addition, the error between the predicted total SPL and the observed value was the smallest, at only 0.37%. Therefore, the method based on the CatBoost algorithm to predict aerodynamic noise is proposed. For different operating points of the compressor, the CatBoost model had high prediction accuracy. The noise contour cloud in the predicted MAP from the CatBoost model was better at characterizing the variation in the total SPL. The maximum and minimum total SPLs were 122.53 dB and 115.42 dB, respectively. To further interpret the model, an analysis conducted by applying the Shapley Additive Explanation algorithm showed that frequency significantly affected the SPL, while the speed, mass flow rate and pressure ratio had little effect on the SPL. Therefore, the proposed method based on the CatBoost algorithm could well predict aerodynamic noise emissions from a turbocharger compressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.