48 Background. Nucleic acid amplification tests (NAATs) are the primary means of 49 identifying acute infections caused by severe acute respiratory syndrome coronavirus 2 50 (SARS-CoV-2). Accurate and fast test results may permit more efficient use of protective and 51 isolation resources and allow for rapid therapeutic interventions. 52 Methods. We evaluated the analytical and clinical performance characteristics of the Xpert ® 53 Xpress SARS-CoV-2 (Xpert) test, a rapid, automated molecular test for SARS-CoV-2. 54 Analytical sensitivity and specificity/interference were assessed with infectious SARS-CoV-2, 55 other infectious coronavirus species including SARS-CoV, and 85 nasopharyngeal swab 56 specimens positive for other respiratory viruses including endemic human coronaviruses 57 (hCoVs). Clinical performance was assessed using 483 remnant upper and lower respiratory 58 specimens previously analyzed by standard of care (SOC) NAATs. 59 Results. The limit of detection of the Xpert test was 0.01 plaque forming units (PFU)/mL. 60 Other hCoVs, including Middle East Respiratory Syndrome coronavirus, were not detected by 61 the Xpert test. SARS-CoV, a closely related species in the Sarbecovirus subgenus, was 62 detected by a broad-range target (E) but was distinguished from SARS-CoV-2 (SARS-CoV-2-63 specific N2 target). Compared to SOC NAATs, the positive agreement of the Xpert test was 64 219/220 (99.5%) and the negative agreement was 250/261 (95.8%). A third tie-breaker 65 NAAT resolved all but three of the discordant results in favor the Xpert test. 66 Conclusions. The Xpert test provided sensitive and accurate detection of SARS-CoV-2 in a 67 variety of upper and lower respiratory tract specimens. The high sensitivity and fast time to 68 results of approximately 45 minutes may impact patient management. 69 70 Laboratory diagnosis of infections caused by severe acute respiratory syndrome coronavirus 2 72 (SARS-CoV-2) is usually accomplished by performing nucleic acid amplification tests 73 (NAATs) on respiratory tract specimens. An antibody response is often not detected in the 74 first week to ten days of symptoms and antibody testing is therefore generally unhelpful for 75 acute diagnosis(1-3), with virus isolation in culture presenting significant biosafety risks. 76 Upper respiratory tract (URT) specimens such as nasopharyngeal swabs (NPS) and 77 oropharyngeal swabs (OPS) generally have high SARS-CoV-2 viral loads upon symptom 78 onset.(2, 4-6) URT specimens may also have detectable RNA during the pre-symptomatic 79 period(7), and pediatric patients who remain asymptomatic through the entire course of 80 on June 9, 2020 by guest http://jcm.asm.org/ Downloaded from 4 infection can persistently shed RNA in URT specimens for two weeks or longer.(4, 8) 81 Importantly, NPS may have higher viral loads than OPS.(6) Lower respiratory tract (LRT) 82 specimens including sputum(7, 9) and tracheal aspirates(10) (TA) are often positive for RNA 83 early in disease and remain positive longer than URT sources.(5) 84 NAATs are...