In the early stages of aircraft design, a scaled model of the aircraft is installed in a wind tunnel for dynamic semi-free flight to approximate real flight, and the test data are then used to identify the aerodynamic parameters. However, the absence of the translational motion of the test model makes its flight dynamics different from those in free flight, and the effect of this difference on parameter identification needs to be investigated. To solve this problem, a 3-DOF wind tunnel virtual flight test device is built to fix the test model on a rotating mechanism, and the model is free to rotate in three axes through the deflection of the control surfaces. The flight dynamics equations for the wind tunnel virtual flight test are established and expressed as a decoupled form of the free flight force and the influence of the test support frame force on the model’s motions through linearization. The differences between wind tunnel virtual flight and free flight are analysed to develop a model for the identification of aerodynamic parameters. The selection of the lateral-directional excitation signal and the design method of its parameters are established based on the requirements for the identifiability of the aerodynamic derivatives, and a step-by-step method for the identification of aerodynamic force and moment derivatives is established. The aerodynamic parameter identification results of a blended wing body aircraft show that the identification method proposed in this paper can obtain results with high accuracy, and the response of the modified motion model is consistent with that of the free flight motion model.