A study was conducted to evaluate the potential effectiveness of a moveable cowl-trailing-edge design for airbreathing hypersonic single-stage-to-orbit (SSTO) configurations, which can be extended or deflected from the nominal position in order to provide additional pitching moment capability. This additional pitching moment capability may reduce the necessary deflection angle from conventional control surfaces and the associated trim drag penalty. Calculations for a generic SSTO configuration with baseline and modified cowl trailing edge geometries were performed at Mach 6 and 10 initially with an engineering analysis code in order to examine several design parametrics. In order to more accurately model geometries and flow physics, 2-D viscous computational fluid dynamics (CFD) predictions were obtained. FInally, a limited set of 3D CFD predictions were obtained at Mach 6 in order to show the effects of modeling 3D flow fields as well as the full 3D vehicle geometry. Comparisons of aftbody surface pressures and force and moment predictions show differences between initial predictions and 2-D CFD solutions due to geometry modeling and calculation method differences. The 3-D CFD predictions confirm the trends observed in the 2-D solutions and provide additional information on 3D effects. These analyses shows that cowltrailing-edge extensions were effective in providing additional (nose-down) pitching moment increments as well as increased thrust compared to the baseline geometry. These effects reduce the control surface deflection angle required to trim the vehicle and the associated trim drag. Cowl-trailingedge deflections were not as effective, generating more noseup pitching moment and decreased thrust compared to nondeflected cases.