We present strong observational evidence for a relationship between the
direction of a pulsar's motion and its rotation axis. We show carefully
calibrated polarization data for 25 pulsars, 20 of which display linearly
polarized emission from the pulse longitude at closest approach to the magnetic
pole. Such data allow determination of the position angle of the linear
polarisation which in turn reflects the position angle of the rotation axis. Of
these 20 pulsars, 10 show an offset between the velocity vector and the
polarisation position angle which is either less than 10\degr or more than
80\degr, a fraction which is very unlikely by random chance. We believe that
the bimodal nature of the distribution arises from the presence of orthogonal
polarisation modes in the pulsar radio emission. In some cases this orthogonal
ambiguity is resolved by observations at other wavelengths so that we conclude
that the velocity vector and the rotation axis are aligned at birth.
Strengthening the case is the fact that 4 of the 5 pulsars with ages less than
3 Myr show this relationship, including the Vela pulsar. We discuss the
implications of these findings in the context of the Spruit & Phinney
(1998)\nocite{sp98} model of pulsar birth-kicks. We point out that, contrary to
claims in the literature, observations of double neutron star systems do not
rule out aligned kick models and describe a possible observational test
involving the double pulsar system.Comment: MNRAS, In Pres