2023
DOI: 10.1080/10400419.2023.2187544
|View full text |Cite
|
Sign up to set email alerts
|

Testing Computational Assessment of Idea Novelty in Crowdsourcing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 72 publications
0
1
0
1
Order By: Relevance
“…Although considered moderate by Koo and Li’s (2016) interrater reliability standards, it impacts some of the study’s external validity conclusions. As such, further research is needed to improve the way of rating creativity of AQT responses, especially via laypersons (Hass et al, 2018; Wang et al, 2023). Perhaps more effort is needed in training raters to increase the reliability and improve the AQT’s validity as a tool used to examine creativity, similar to Amabile’s (1982) consensual assessment technique or utilization of quasi-expert raters (Kaufman & Baer, 2012; Kaufman et al, 2013).…”
Section: Discussionmentioning
confidence: 99%
“…Although considered moderate by Koo and Li’s (2016) interrater reliability standards, it impacts some of the study’s external validity conclusions. As such, further research is needed to improve the way of rating creativity of AQT responses, especially via laypersons (Hass et al, 2018; Wang et al, 2023). Perhaps more effort is needed in training raters to increase the reliability and improve the AQT’s validity as a tool used to examine creativity, similar to Amabile’s (1982) consensual assessment technique or utilization of quasi-expert raters (Kaufman & Baer, 2012; Kaufman et al, 2013).…”
Section: Discussionmentioning
confidence: 99%
“…Валуева и др. Автоматическая оценка вербальной креативности а об идеях, выраженных в виде целых текстов (Wang et al, 2023). Конкурентами контекстно-независимых моделей дистрибутивной семантики в исследованиях творчества очень быстро стали модели, основанные на нейросетях глубокого обучения, позволяющие не только учитывать частоту встречаемости слов, но и распознавать значение слов в зависимости от контекста.…”
Section: большие языковые моделиunclassified