Objective
The objectives were to compare variance components, genetic parameters, prediction accuracies, and genomic-polygenic estimated breeding value (EBV) rankings for milk yield (MY) and fat yield (FY) in the Thai multibreed dairy population using five single nucleotide polymorphism (SNP) sets from GeneSeek GGP80K chip.
Methods
The dataset contained monthly MY and FY of 8,361 first-lactation cows from 810 farms. Variance components, genetic parameters, and EBV for five SNP sets from the GeneSeek GGP80K chip were obtained using a 2-trait single-step average-information restricted maximum likelihood procedure. The SNP sets were the complete SNP set (all available SNP; SNP100), top 75% set (SNP75), top 50% set (SNP50), top 25% set (SNP25), and top 5% set (SNP5). The 2-trait models included herd-year-season, heterozygosity and age at first calving as fixed effects, and animal additive genetic and residual as random effects.
Results
The estimates of additive genetic variances for MY and FY from SNP subsets were mostly higher than those of the complete set. The SNP25 MY and FY heritability estimates (0.276 and 0.183) were higher than those from SNP75 (0.265 and 0.168), SNP50 (0.275 and 0.179), SNP5 (0.231 and 0.169), and SNP100 (0.251and 0.159). The SNP25 EBV accuracies for MY and FY (39.76% and 33.82%) were higher than for SNP75 (35.01% and 32.60%), SNP50 (39.64% and 33.38%), SNP5 (38.61% and 29.70%), and SNP100 (34.43% and 31.61%). All rank correlations between SNP100 and SNP subsets were above 0.98 for both traits, except for SNP100 and SNP5 (0.93 for MY; 0.92 for FY).
Conclusion
The high SNP25 estimates of genetic variances, heritabilities, EBV accuracies, and rank correlations between SNP100 and SNP25 for MY and FY indicated that genotyping animals with SNP25 dedicated chip would be a suitable to maintain genotyping costs low while speeding up genetic progress for MY and FY in the Thai dairy population.