“…The reasons for the popularity of GEA analyses are practical: They require no phenotypic data or prior genomic resources, do not require experimental approaches (such as reciprocal transplants) to demonstrate local adaptation, and are often more powerful than differentiation‐based outlier detection methods (De Mita et al., 2013; de Villemereuil, Frichot, Bazin, François, & Gaggiotti, 2014; Forester, Lasky, Wagner, & Urban, 2018; Lotterhos & Whitlock, 2015). In particular, participants considered how and why detection rates differed between univariate and multivariate GEAs, exploring the use of latent factor mixed models (Frichot, Schoville, Bouchard, & Francois, 2013) and redundancy analysis (Forester, Jones, Joost, Landguth, & Lasky, 2016; Lasky et al., 2012), respectively. Recent work has shown that RDA is an effective means of detecting adaptive processes that result in weak, multilocus molecular signatures (Forester et al., 2018), providing a powerful tool for investigating the genetic basis of local adaptation and informing management actions to conserve evolutionary potential (Flanagan et al., 2017; Harrisson et al., 2014; Hoffmann et al., 2015).…”