This paper investigates fibrous thermal insulation materials of various densities to assess the change in their thermophysical properties at high temperatures. The thermal conductivity of fibrous thermal insulation materials is discussed as a function of the temperature in the range from 50 °C to 500 °C. It is shown that the thermal insulating properties depend not only on the physical properties of the material (e.g., density or diameter of fibres), but also on the geometric parameters of the structure and on the orientation of the fibres. The influence of high temperatures on the mass change of fibrous materials associated with the burnout of synthetic binders is shown. These features should be taken into account during the design of thermal insulation operating at high temperatures to provide the optimal selection of the material and to guarantee the stability of their thermal properties.