The coagulation of aerosol particles plays an important role in the structural morphological changes of suspended particles at any time and in any space. In this study, based on the Smoluchowski equation of population balance, a kinetic model of aerosol coalescence considering Brownian motion collision is established. By applying the developed Lie group method, we derive the allowed infinitesimal symmetries and group-invariant solutions of the integro-differential equation, as well as the exact solution under some special conditions. We also provide detailed steps and a discussion of the properties. The content and results provide an effective analytic solution for the progressive evolution of aerosol particle size considering boundary and initial conditions. This solution reveals the self-conservative phenomena in the process of aerosol coalescence and also provides validation for the numerical algorithms of general dynamics equations.