This is the accepted version of the paper.This version of the publication may differ from the final published version. (2006) show equilibrium restrictions in a search model can be used to identify quantiles of the search cost distribution from observed prices alone. These quantiles can be di¢ cult to estimate in practice. This paper uses a minimum distance approach to estimate them that is easy to compute. A version of our estimator is a solution to a nonlinear least squares problem that can be straightforwardly programmed on softwares such as STATA.
Permanent repository linkWe show our estimator is consistent and has an asymptotic normal distribution. Its distribution can be consistently estimated by a bootstrap. Our estimator can be used to estimate the cost distribution nonparametrically on a larger support when prices from heterogeneous markets are available. We propose a two-step sieve estimator for that case. The …rst step estimates quantiles from each market. They are used in the second step as generated variables to perform nonparametric sieve estimation. We derive the uniform rate of convergence of the sieve estimator that can be used to quantify the errors incurred from interpolating data across markets. To illustrate we use online bookmaking odds for English football leagues'matches (as prices) and …nd evidence that suggests search costs for consumers have fallen following a change in the British law that allows gambling operators to advertise more widely.
JEL Classification Numbers: C13, C15, D43, D83, L13Keywords: Bootstrap, Generated Variables, M-Estimation, Search Cost, Sieve EstimationWe are very grateful to the authors of Moraga-González, Sándor and Wildenbeest (2013) for sharing their MATLAB code with us. We thank an anonymous referee for helpful comments and suggestions. We would also like to thank