A statistical field theory is developed to explore the density of states and spatial profile of 'tail states' at the edge of the spectral support of a general class of disordered non-Hermitian operators. These states, which are identified with symmetry broken, instanton field configurations of the theory, are closely related to localized sub-gap states recently identified in disordered superconductors. By focusing separately on the problems of a quantum particle propagating in a random imaginary scalar potential, and a random imaginary vector potential, we discuss the methodology of our approach and the universality of the results. Finally, we address potential physical applications of our findings.