Let f1, . . . , fs be polynomials in Q[X1, . . . , Xn] that generate a radical ideal and let V be their complex zeroset. Suppose that V is smooth and equidimensional; then we show that computing suitable sections of the polar varieties associated to generic projections of V gives at least one point in each connected component of V ∩ R n . We deduce an algorithm that extends that of Bank, Giusti, Heintz and Mbakop to non-compact situations. Its arithmetic complexity is polynomial in the complexity of evaluation of the input system, an intrinsic algebraic quantity and a combinatorial quantity.