2013
DOI: 10.1016/j.econlet.2013.09.012
|View full text |Cite
|
Sign up to set email alerts
|

Testing slope homogeneity in large panels with serial correlation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

5
125
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 352 publications
(132 citation statements)
references
References 6 publications
5
125
0
2
Order By: Relevance
“…Now we consider asset pricing tests with cross-sectional dependence. There are several testing procedures for slope homogeneity available in the literature; see, for example, Pesaran, Smith, and Im (1996), Phillips and Sul (2003), Pesaran and Yamagata (2008), Blomquist and Westerlund (2013), and Su and Chen (2013). Ando and Bai (2015) extend these tests by accommodating the presence of cross-sectional correlation between the error terms of the different regression models indexed by i = 1, … , N. However, to the best of our knowledge there is no available test of slope homogeneity in panel data models that accounts for generated regressors.…”
Section: Third Stage: Homogeneity Testsmentioning
confidence: 99%
“…Now we consider asset pricing tests with cross-sectional dependence. There are several testing procedures for slope homogeneity available in the literature; see, for example, Pesaran, Smith, and Im (1996), Phillips and Sul (2003), Pesaran and Yamagata (2008), Blomquist and Westerlund (2013), and Su and Chen (2013). Ando and Bai (2015) extend these tests by accommodating the presence of cross-sectional correlation between the error terms of the different regression models indexed by i = 1, … , N. However, to the best of our knowledge there is no available test of slope homogeneity in panel data models that accounts for generated regressors.…”
Section: Third Stage: Homogeneity Testsmentioning
confidence: 99%
“…However, Blomquist and Westerlund (2013) pointed out that the test cannot deal with the practically relevant case of heteroskedastic and serially correlated errors. To overcome this difficulty, Blomquist and Westerlund (2013) proposed a generalized test that accommodates both features.…”
Section: Hac Version Of ∆ Testmentioning
confidence: 99%
“…Furthermore, with serial correlation, we can also use the method of Blomquist and Westerlund (2013) to compute Ω i .…”
Section: Case 3: Heteroskedastic Errors Over I and Tmentioning
confidence: 99%
See 2 more Smart Citations