Objectives
Subcutaneous implantations in small animal models are currently required for preclinical studies of acellular tissue to evaluate biocompatibility, including host recellularization and immunogenic reactivity.
Methods
Three rat subcutaneous implantation methods were evaluated in six Sprague Dawley rats. An acellular xenograft made from porcine pericardium was used as the tissue-scaffold. Three implantation methods were performed; 1) Suture method is where a tissue-scaffold was implanted by suturing its border to the external oblique muscle, 2) Control method is where a tissue-scaffold was implanted without any suturing or support, 3) Frame method is where a tissue-scaffold was attached to a circular frame composed of polycaprolactone (PCL) biomaterial and placed subcutaneously. After 1 and 4 weeks, tissue-scaffolds were explanted and evaluated by hematoxylin and eosin (H&E), Masson’s trichrome, Picrosirius Red, transmission electron microscopy (TEM), immunohistochemistry, and mechanical testing.
Results
Macroscopically, tissue-scaffold degradation with the suture method and tissue-scaffold folding with the control method were observed after 4 weeks. In comparison, the frame method demonstrated intact tissue scaffolds after 4 weeks. H&E staining showed progressive cell repopulation over the course of the experiment in all groups with acute and chronic inflammation observed in suture and control methods throughout the duration of the study. Immunohistochemistry quantification of CD3, CD 31, CD 34, CD 163, and αSMA showed a statistically significant differences between the suture, control and frame methods (P < 0.05) at both time points. The average tensile strength was 4.03 ± 0.49, 7.45 ± 0.49 and 5.72 ± 1.34 (MPa) after 1 week and 0.55 ± 0.26, 0.12 ± 0.03 and 0.41 ± 0.32 (MPa) after 4 weeks in the suture, control, and frame methods; respectively. TEM analysis showed an increase in inflammatory cells in both suture and control methods following implantation.
Conclusion
Rat subcutaneous implantation with the frame method was performed with success and ease. The surgical approach used for the frame technique was found to be the best methodology for in vivo evaluation of tissue engineered acellular scaffolds, where the frame method did not compromise mechanical strength, but it reduced inflammation significantly.