Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. Are the standard laws of Physics really fundamental principles? Does the physical vacuum have a more primordial internal structure? Are quarks, leptons, gauge bosons... ultimate elementary objects? These three basic questions are actually closely related. If the deep vacuum structure and dynamics turn out to be less trivial than usually depicted, the conventional "elementary" particles will most likely be excitations of such a vacuum dynamics that remains by now unknown. We then expect relativity and quantum mechanics to be low-energy limits of a more fundamental dynamical pattern that generates them at a deeper level. It may even happen that vacuum drives the expansion of the Universe from its own inner dynamics. Inside such a vacuum structure, the speed of light would not be the critical speed for vacuum constituents and propagating signals. The natural scenario would be the superbradyon (superluminal preon) pattern we postulated in 1995, with a new critical speed c s much larger than the speed of light c just as c is much larger than the speed of sound. Superbradyons are assumed to be the bradyons of a super-relativity associated to c s (a Lorentz invariance with c s as the critical speed). Similarly, the standard relativistic space-time with four real coordinates would not necessarily hold beyond low-energy and comparatively local distance scales. Instead, the spinorial space-time (SST) with two complex coordinates we introduced in 1996-97 may be the suitable one to describe the internal structure of vacuum and standard "elementary" particles and, simultaneously, Cosmology at very large distance scales. If the constituents of the preonic vacuum are superluminal, quantum entanglement appears as a natural property provided c s c . The value of c s can even be possibly found experimentally by studying entanglement at large distances. It is not excluded that preonic constituents of vacuum can exist in our Universe as free particles ("free" superbradyons), in which case we expect them to be weakly coupled to standard matter. If a preonic vacuum is actually leading the basic dynamics of Particle Physics and Cosmology, and standard particles are vacuum excitations, the Gödel-Cohen incompleteness will apply to vacuum dynamics whereas the conventional laws of physics will actually be approximate and have error bars. We discuss here the possible role of the superbradyonic vacuum and of the SST in generating Quantum Mechanics, as well as the implications of such a dynamical origin of the conventional laws of Physics and possible evidences in experiments and observations. Black holes, gravitational waves, possible "free" superbradyons or preonic waves, unconventional vacuum radiation... are considered from this point of view paying particular attention to LIGO, VIRGO and CERN experiments. This lecture is dedicated to the memory of John Bell
Abstract. Are the standard laws of Physics really fundamental principles? Does the physical vacuum have a more primordial internal structure? Are quarks, leptons, gauge bosons... ultimate elementary objects? These three basic questions are actually closely related. If the deep vacuum structure and dynamics turn out to be less trivial than usually depicted, the conventional "elementary" particles will most likely be excitations of such a vacuum dynamics that remains by now unknown. We then expect relativity and quantum mechanics to be low-energy limits of a more fundamental dynamical pattern that generates them at a deeper level. It may even happen that vacuum drives the expansion of the Universe from its own inner dynamics. Inside such a vacuum structure, the speed of light would not be the critical speed for vacuum constituents and propagating signals. The natural scenario would be the superbradyon (superluminal preon) pattern we postulated in 1995, with a new critical speed c s much larger than the speed of light c just as c is much larger than the speed of sound. Superbradyons are assumed to be the bradyons of a super-relativity associated to c s (a Lorentz invariance with c s as the critical speed). Similarly, the standard relativistic space-time with four real coordinates would not necessarily hold beyond low-energy and comparatively local distance scales. Instead, the spinorial space-time (SST) with two complex coordinates we introduced in 1996-97 may be the suitable one to describe the internal structure of vacuum and standard "elementary" particles and, simultaneously, Cosmology at very large distance scales. If the constituents of the preonic vacuum are superluminal, quantum entanglement appears as a natural property provided c s c . The value of c s can even be possibly found experimentally by studying entanglement at large distances. It is not excluded that preonic constituents of vacuum can exist in our Universe as free particles ("free" superbradyons), in which case we expect them to be weakly coupled to standard matter. If a preonic vacuum is actually leading the basic dynamics of Particle Physics and Cosmology, and standard particles are vacuum excitations, the Gödel-Cohen incompleteness will apply to vacuum dynamics whereas the conventional laws of physics will actually be approximate and have error bars. We discuss here the possible role of the superbradyonic vacuum and of the SST in generating Quantum Mechanics, as well as the implications of such a dynamical origin of the conventional laws of Physics and possible evidences in experiments and observations. Black holes, gravitational waves, possible "free" superbradyons or preonic waves, unconventional vacuum radiation... are considered from this point of view paying particular attention to LIGO, VIRGO and CERN experiments. This lecture is dedicated to the memory of John Bell
Abstract. To the experimental uncertainties on the present value H 0 of the LundmarkLemaître -Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known difficulties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST) we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe) is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic structure. If preons are the constituents of the physical vacuum, as postulated two decades ago with the superbradyon (superluminal preon) hypothesis, the strongest implication would be the possibility that vacuum actually drives the expansion of the Universe. If an unstable (metastable) vacuum permanently expands, it can release energy in the form of conventional matter and of its associated kinetic energy. The SST can be the expression of such an expanding vacuum at cosmic level. We briefly discuss these and related issues, as well as relevant open questions including the problematics of the initial singularity and the cosmic vacuum dynamics in a pre-Big Bang era. The possibility to obtain experimental information on the preonic internal structure of vacuum is also considered. This paper is dedicated to the memory of Henri Poincaré
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.